Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination.

نویسندگان

  • Chia-Jung Chang
  • Cheng-Chung Lee
  • Yueh-Te Chan
  • Devin L Trudeau
  • Mei-Huey Wu
  • Chih-Hsuan Tsai
  • Su-May Yu
  • Tuan-Hua David Ho
  • Andrew H-J Wang
  • Chwan-Deng Hsiao
  • Frances H Arnold
  • Yu-Chan Chao
چکیده

Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases provide a pair of structures ideal for investigating the mechanism regarding how these cellulases can retain activity at high temperature. In the present study, we applied the SCHEMA non-contiguous recombination algorithm as a novel tool, which assigns protein sequences into blocks for domain swapping in a way that lessens structural disruption, to generate a set of chimeric proteins derived from the recombination of GsCelA and BsCel5A. Analyzing the activity and thermostability of this designed library set, which requires only a limited number of chimeras by SCHEMA calculations, revealed that one of the blocks may contribute to the higher thermostability of GsCelA. When tested against swollen Avicel, the highly thermostable chimeric cellulase C10 containing this block showed significantly higher activity (22%-43%) and higher thermostability compared to the parental enzymes. With further structural determinations and mutagenesis analyses, a 310 helix was identified as being responsible for the improved thermostability of this block. Furthermore, in the presence of ionic calcium and crown ether (CR), the chimeric C10 was found to retain 40% residual activity even after heat treatment at 90°C. Combining crystal structure determinations and structure-guided SCHEMA recombination, we have determined the mechanism responsible for the high thermostability of GsCelA, and generated a novel recombinant enzyme with significantly higher activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability.

A quantitative linear model accurately (R(2) = 0.88) describes the thermostabilities of 54 characterized members of a family of fungal cellobiohydrolase class II (CBH II) cellulase chimeras made by SCHEMA recombination of three fungal enzymes, demonstrating that the contributions of SCHEMA sequence blocks to stability are predominantly additive. Thirty-one of 31 predicted thermostable CBH II ch...

متن کامل

Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability

BACKGROUND The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostabil...

متن کامل

Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea

Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industria...

متن کامل

Improved thermostability of Clostridium thermocellum 1 endoglucanase Cel 8 A using consensus - guided mutagenesis 2 3

3 Michael Anbar, Ozgur Gul, Raphael Lamed, Ugur O. Sezerman 4 and Edward A. Bayer* 5 6 Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 7 76100 Israel 8 2 Biological Sciences and Bioengineering, Sabanci University, Orhanli, Tuzla, 9 Istanbul, Turkey 10 3 Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 11 Ramat Aviv 69978 Israel...

متن کامل

Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study.

Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016